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Analytical self-energies for molecular interfaces with one-dimensional, tight-binding semiconductors are derived,
along with analytical solutions to the electrode eigensystems. These models capture the fundamental differences
between the transport properties of metals and semiconductors and also account for the appearance of surface
states. When the models are applied to zero-temperature electrode-molecule-electrode conductance, junctions
with two semiconductor electrodes exhibit a minimum bias threshold for generating current due to the absence
of electrode states near the Fermi level. Molecular interactions with semiconductor electrodes additionally
produce (i) non-negligible molecular-level shifting by mechanisms absent in metals and (ii) sensitivity of the
transport to the semiconductor-molecule bonding configuration. Finally, the general effects of surface states
on molecular transport are discussed.

Introduction

The transfer of charge between an adsorbed molecule and a
bulk substrate is a key process in a wide range of chemical
reactions. For example, charge separation in dye-sensitized solar
cells occurs at the interface of dye molecules and titanium
dioxide nanoparticles.1 Electrochemical processes additionally
occur at metal surfaces.2 Substrate-molecule interactions, useful
for both their fundamental importance and their potential
applications, clearly need to be understood.

A typical scanning tunneling microscopy experiment brings
a metal tip into the vicinity of a surface-adsorbed molecule,
where, under bias, current flows through the molecule as it
traverses the tip-substrate gap. The past decade has witnessed
immense interest in such molecular transport situations,3-7 and
most work in molecular electronics has emphasized the critical
importance of the molecule-electrode interfaces.8-14 Not only
does the electronic coupling between the molecule and the
surface control the magnitude of the current, it also influences
the electronic structure of the molecule.

To date, theoretical descriptions, and to a lesser extent
experimental efforts, have largely focused on systems with two
metal electrodes,8-11,13-17 often gold. Interesting physics, how-
ever, appears when one or both leads are replaced with
semiconductors,18-25 including negative differential resistance19,20

and rectification.18 The industrial dominance of semiconductors,
notably silicon, suggests the development of hybrid electronics,
where single molecules or organic thin films are integrated with
conventional silicon technology.26-29 Semiconductor surfaces
with adsorbed molecules often lend themselves to near-perfect
characterization and, with clever choices of semiconductor
materials and dopants, permit customization of the band structure
and transport properties to the specific application. Semiconduc-
tors also introduce mechanisms for interesting molecular
vibrational dynamics, along with approaches for optical con-
trol.30

A detailed understanding of molecule-electrode coupling
requires more than the simple tunneling barrier view of the
transport junction. In the coherent tunneling regime, the
tunneling current is often well-described by the Landauer-Imry
equation,31-33 where the molecule is treated using Green’s
functions. The molecule-surface interactions are indirectly
described by the impact they have on the molecule, which is
formally accomplished by a self-energy,

that modifies the molecular Green’s functions. The real part of
the self-energy, Λ(E), describes the shift of a molecular energy
level due to hybridization with the electrode. This molecular
level shifting is negligible for metals11 in the wide band limit;
however, recent studies have shown molecule-semiconductor
interactions to be more significant.22,25 The spectral density,
Γ(E), represents the broadening of a molecular level induced
by the electrode and is effectively the density of electrode states
weighted by the square of the molecule-electrode coupling.
The self-energy also captures the effects of surface states.

Contemporary computational approaches use electronic struc-
ture calculations of the self-energies for investigating molecular
transport junctions.8,10,11,15,23,24,34,35 These approaches, while
broadly applicable, can be complicated by the treatment of
electron correlation and by basis set errors, and additionally by
band bending and by doping when semiconductors are consid-
ered. At the expense of quantitative accuracy, much physical
insight can be gained from analytical models of the self-energy.
Newns36 derived a simple analytical model for the self-energy
of an interface between a molecule and a one-dimensional, tight-
binding metal electrode, building on earlier work by Anderson.37

The introduction of alternating site energies or intersite couplings
has generalized this metal model to one-dimensional semicon-
ductors, where such alternations yield band gaps in the models’
densities of states.38-40

This is the starting point for our work. Following Newns,
we derive an analytical expression for the self-energy of a
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semiconductor-molecule interface where the lead has simul-
taneously alternating site energies and intersite couplings. We
subsequently investigate the current-voltage characteristics of
model molecular transport junctions with various metal and
semiconductor electrodes. Previous work41 treated two limits
of this model where only the site energies or only the intersite
couplings were alternated. As was noted, those results did not
correctly coincide with the Newns-Anderson result in the limit
of metal electrodes. This work solves the model in full
generality, correcting these deficiencies, and exposes the
consequences of some assumptions made in ref 41 by comparing
the appropriate limits.

The layout of this paper is as follows. We first review the
basics of molecular conductance, the Newns-Anderson (NA)
model for metals, and the essentials of surface states. We then
solve the various semiconductor electrodes’ eigensystems, derive
the semiconductor-molecule interfaces’ self-energies, and
compare the appropriate limits to the results of the previous
article. We proceed to examine how semiconductor electrodes
andtheirmolecule-substrateinteractionsinfluencecurrent-voltage
curves, as opposed to those of metal electrodes. We finally draw
several conclusions and suggest ideas for future studies.

Electronic Transport, Models, and Surface States

Molecular Conductance. When a molecule adsorbs to a
surface or attaches to an electrode, the molecular energy levels
both shift and broaden into resonances, as described by the self-
energy. Here, we assume that the molecule has only a single
state, |s〉 , of energy ε, representing a broad class of molecular
systems where only one or two molecular states contribute as
channels toward the total conductance. This assumption is
acceptable since molecular-level spacings are usually large and
is convenient for investigating the essential physics underlying
charge-transfer processes.

We denote the “atomic” levels of a particular electrode by
{|�j〉} and the Bloch states of the same electrode by {|k〉} with
corresponding energies {εk}. In a tight-binding picture where
each electrode site has only a single level, the molecular state
solely couples to the terminal atomic level, |�1〉 , that is, 〈s|H 〉�j〉
) γδj,1, where H is the total system Hamiltonian. For isolated
resonances, the spectral density resulting from adsorption is

with Vk ≡ 〈s|H 〉k〉 ) γ〈�1)|k〉 . When Σ(E) has no singularities
on the real energy axis, Γ(E) is related to Λ(E) by the Hilbert
transform, which is often nontrivial to evaluate analytically. As
we will see, such singularities may be manifestations of
electrode surface states.

Alternatively, the self-energy of a molecule coupled to an
electrode can be expressed in terms of the electrode Green’s
function:

where V is the molecule-electrode coupling matrix and Gelec(E)
is the electrode Green’s function. In a one-dimensional, tight-
binding picture,42,43

where the superscripts denote the specific site in the one-
dimensional chain;44 Ri is the site energy of site i, and �i is the
coupling element between sites i and i + 1. We assume all �i

< 0, restricting our attention to bonding-type overlaps, and that
all Ri are real. Extensions incorporating antibonding-type
overlaps (�i > 0) are easily performed. Figure 1 schematically
represents such a one-dimensional electrode. For the systems
appearing later, this formulation provides the real and imaginary
parts of Σ(E) up to a choice of sign, vide infra. The subsequent
calculations will also be simplified if we require the average
site energy of all electrode sites, �, to be 0, thereby making the
Ri into relative energies. We will replace E by E - � for
scenarios where � plays a more prominent role.

In the Landauer-Imry limit,31-33 the transmission function
for an electron injected into the electrode-molecule-electrode
junction at energy E is

which simplifies to

when the molecule has a single state. In eq 5, ΓL(R)(E) is the
spectral density from coupling to the left (right) electrode, G(E)
is the retarded molecular Green’s function,

ε is the molecular state energy, and ΣL(R)(E) is the self-energy
from coupling to the left (right) electrode. For isolated reso-
nances and noninteracting electrodes (except via the molecule),
the transmission function at a molecular energy level, T(ε), will
have a Lorentzian line shape with width Γ. We note that T(E)
parametrically depends on an applied bias voltage V, T )
T(E; V), since the bias shifts the electrode levels, thereby altering
the self-energies and molecular Green’s function.

Suppose that the left electrode has a Fermi level EF,L and that
the right electrode’s is EF,R. When the electrode-molecule-
electrode junction is initially connected, electrons spontaneously
flow (without an applied bias) from high free-energy states in one
electrode to lower free-energy states in the other via the molecule.
This charge transfer between the electrodes contributes an elec-
trostatic potential difference across the junction, which increases
until the effective Fermi levels of the two electrodes equalize and
the system reaches equilibrium. This equilibrium Fermi level, EF,
is not trivial to calculate and is one facet of the “band lineup”
problem.45 The other aspect pertains to the amount of charge
transferred between the electrodes. For simplicity, we circumvent
this problem by requiring electrodes to be of the same material,
EF,L ) EF,R ) EF and the system is in equilibrium at zero bias.

The total current through the junction, I, is34,46

Γ(E) ) 2π ∑
k

|Vk|
2δ(E - εk) (2)

Σ(E) ) V†Gelec(E)V (3)

Gelec
i (E) ) 1

E - Ri - �i
2Gelec

i+1(E)
(4)

Figure 1. Schematic display of the general one-dimensional, tight-
binding system. The site energy of |�i〉 is Ri, and the coupling element
between |�i〉 and |�i+1〉 is �i. The molecular level |s〉 has energy ε and
couples to |�1〉 with element γ.

T(E) ) Tr[ΓL(E)G(E)ΓR(E)G†(E)]

T(E) ) |G(E)|2ΓL(E)ΓR(E) (5)

G(E) ) 1
E - ε - ΣL(E) - ΣR(E)

(6)
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where fL(R)(E;V) is the Fermi function of the left (right) electrode.
Each Fermi function depends on the electrode’s chemical
potential, which in turn relies on the applied bias. Two limits
allow simplifications of eq 7. First is the limit of zero
temperature, fL(R)(E;V) f Θ(-E + EF ( eV/2), where Θ(x) is
the Heaviside (step) function. The use of plus/minus signs here
arises from the arbitrary “left” and “right” labels applied to the
electrodes. The second is the small bias limit, where we neglect
the transmission function’s dependence on the bias, T(E;V) f
T(E). Applying these limits,

Newns-Anderson (NA) Metal Model. A concise review
of the Newns-Anderson model will prove indispensable in the
derivations presented later. Representing a chain of N identical
metal sites in a tight-binding picture, the Newns-Anderson
Hamiltonian is

All of the atomic levels here have the same energy, allowing
us to take Ri ) 0 without any loss in generality (� ) 0). From
Bloch’s theory, we expect the eigenstates of HNA to be

for constants A and B. Clearly, 〈�j|k〉 ) Aeikj + Be-ikj.
To determine A and B, we create virtual sites 0 and N + 1

such that the eigenstate amplitude disappears at these sites, 〈�0|k〉
) 〈�N+1|k〉 ) 0. From these conditions, we see that k is
quantized, k ) kn ) nπ/(N + 1), with n ) 1, 2, ..., N, that

once normalized, and that εkn
) 2� cos(kn) is the eigenvalue of

|kn〉.
The eigenstates, with Vkn

) 21/2(N + 1)-1/2γ sin(kn), and eq 2
are used to determine ΓNA(E). In the limit of N f ∞, where kn

essentially becomes continuous,

for |E| e 2|�|. ΓNA(E) ) 0 for all other E. The center of the
metal band is �, and the bandwidth is 4|�|.

We now use the electrode Green’s function formulation of
ΣNA(E) to determine ΛNA(E). Since all sites in this one-
dimensional chain are identical, eq 4 becomes

which produces (dropping the superscript)

As foreshadowed earlier, we obtain GNA(E) up to a choice of
sign. GNA(E) is complex when E2 - 4�2 < 0 (|E| < 2|�|), and
the negative sign is chosen to make ΓNA(E) g 0; see eqs 1 and
2. Parenthetically, this choice yields eq 12 once we introduce
the two factors of γ from V and V†.

When the molecular site level is energetically far from the
metal band, we expect the surface to induce negligible molecular
effects, that is, ΣNA(E) f 0 as |E| f ∞. Only one sign choice
for each interval, E < -2|�| and E > 2|�|, satisfies this
requirement, allowing the total specification

where

We note that ΘNA(E) specifies the sign choices and that, for
this simple model, the Hilbert transform of ΓNA(E) can be
analytically evaluated, yielding the same result. Figure 2 shows
ΛNA(E) and ΓNA(E).

Semiconductor Models. Several perturbations of the Newns-
Anderson metal model have been used for modeling semi-
conductors.38-41,47,48 One such model, introduced by Koutecký
and Davison (KD),38 alternates both the site energies and
intersite couplings, doubling the unit cell of the one-dimensional
crystal. This model may consider each unit cell as an atom,

I(V) ) 2e
h ∫-∞

∞
dET(E;V)[fL(E;V) - fR(E;V)] (7)

I(V) ) 2e
h ∫EF-eV/2

EF+eV/2
dET(E) (8)

HNA ) � ∑
j)1

N-1

|�j〉〈 �j+1| + h.c. (9)

|k〉 ) A|k+〉 + B|k-〉

) A ∑
j)1

N

eikj|�j〉 + B ∑
j)1

N

e-ikj|�j〉
(10)

|kn〉 ) � 2
N + 1 ∑

j)1

N

sin(kn j)|�j〉 (11)

ΓNA(E) ) lim
Nf∞

2π ∑
n)1

N
2γ2

N + 1
sin2(kn)δ(E - 2� cos(kn))

) 4γ2 ∫0

π
dk sin2(k)δ(E - 2� cos(k))

) γ2

�2
√4�2 - E2

(12)

Figure2. Theself-energy,ΣNA(E), foramoleculeandaNewns-Anderson
metal. ΓNA(E) (green, solid line) peaks at E ) 0 to a value of 2γ2/|�|,
and ΛNA(E) (blue, dashed line) realizes its extrema of (γ2/|�| at E )
(2|�|.

GNA
i (E) ) 1

E - �2GNA
i (E)

GNA(E) ) E ( √E2 - 4�2

2�2
(13)

ΛNA(E)

γ2
) E

2�2
+ ΘNA(E)

√E2 - 4�2

2�2
(14)

ΘNA(E) ) Θ(-2|�|-E) - Θ(E - 2|�|)
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with the two sites’ states corresponding to s and p orbitals. The
coupling between the s and p orbitals in the same unit cell
describes their overlap, and the coupling across unit cells
describes the interatomic bonding. Neighboring s-s and p-p
interactions are neglected in the simple tight-binding model.
For convenience, we will assume there are 2N atomic sites in
the system, a moot distinction in the limit of N f ∞. The
Hamiltonian for this system is

The restriction � ) 0 here allows a reduction in the number of
parameters; only one (R) is needed to describe the disparate
site energies (R and -R), as opposed to the more general case
requiring two.

The KD model has three important limits. First is the
combined limit R f 0 and �1 f �2 ≡ �, which produces the
Newns-Anderson model. Second is the limit �1 f �2 ≡ �.
This alternating site (AS) model has been used to describe
titanium dioxide,40 where the site energies (R and -R) cor-
respond to the different atoms. The AS Hamiltonian (� ) 0) is

Lastly is the limit Rf 0, where the model alternates bonds (AB).
The AB model has been used to model silicon and germanium,39

where the bond disparities (�1 and �2) relate to orbital hybridization
(the s and p orbitals become degenerate, as is the case when they
hybridize). The AB Hamiltonian (� ) 0) is

Surface States. When a crystal is cleaved into two noninter-
acting parts, symmetries break and surfaces form. The surfaces
can exhibit dangling bonds, potentially leading to reconstructions,
and surface states, with densities localized near the surface. Two
principal types of surface states, Tamm49 and Shockley50 states,
are very similar in effect but caused by different physics. Tamm
states appear when the site energies and intersite couplings near
the surface are sufficiently perturbed from their bulk values. These
perturbations are collectively called the surface potential. Alter-
natively, Shockley states result from band “crossings” and appear
in the gap between crossed bands. Additional contrasts between
Tamm and Shockley surface states are discussed in refs 38 and
47. With no surface potential in the KD model (also AB and AS),
any surface states here will be of the Shockley type.

Surface states are properties of the electrode alone, as opposed
to the molecule-electrode interface, and can be identified by any
poles of the electrode Green’s function.51 Koutecký calculated that
a surface state appears in the KD model at E ) R when |�1| e
|�2|.38 It follows that a surface state also appears at E ) 0 when

|�1| < |�2| in the AB model. In these cases, the localized bond
between sites 0 and 1 is of the stronger bond type and creates a
surface state of nonbonding character when it ruptures during
surface formation.38 Furthermore, this surface state moves to a band
edge at E ) R in the AS model (�1 ) �2), representing the point
of band crossing. A surface state does not appear when a weaker
bond is broken (|�1| > |�2|). As a small digression, the surface states
for these one-dimensional models can also be termed end states.
Just as two-dimensional surface states appear for three-dimensional
solids, these end states are zero-dimensional, only having densities
at the ends of the chain. Experiments have recently observed such
end states.52

Semiconductor-Molecule Self-Energies

The derivation of the self-energy for the Koutecký-Davison
(KD) semiconductor-molecule interface will follow the meth-
odology of the Newns-Anderson (NA) metal-molecule inter-
face: we solve the Hamiltonian eigensystem and use its solutions
to calculate the spectral density. We then obtain ΛKD(E) by the
electrode Green’s function method. We finally take the limits
R f 0 and �1 f �2 ≡ � to explore AB and AS junctions,
respectively.

Koutecký-Davison (KD) Model. The two-fold alternation
of the sites suggests that two Bloch states are required for
describing the system. If we first restrict our attention to
outgoing states (scattering states obeying retarded boundary
conditions, denoted by a + superscript), these two states are

and

where |k+ 〉 ) Co|k+,o〉 + Ce|k+,e〉 . Since we want |k+〉 to be an
eigenstate of HKD, we solve the secular equation,

to find that

The sign function in eq 18 forces both the density of states (not
shown) and the spectral density (vide infra) to remain non-
negative for all E, as required by definition and eq 2,
respectively. Using these eigenvalues, the secular equation, and
the normalization condition |Co|2 + |Ce|2 ) 1, we determine the
outgoing eigenstates as

HKD ) R∑
j)1

N

|�2j-1〉〈 �2j-1| - R∑
j)1

N

|�2j〉〈 �2j| +

[�1 ∑
j)1

N

|�2j-1〉〈 �2j| + �2 ∑
j)1

N-1

|�2j+1〉〈 �2j| + h.c.] (15)

HAS ) R∑
j)1

N

|�2j-1〉〈 �2j-1| - R∑
j)1

N

|�2j〉〈 �2j| +

[� ∑
j)1

2N-1

|�j〉〈 �j+1| + h.c.] (16)

HAB ) �1 ∑
j)1

N

|�2j-1〉〈 �2j| + �2 ∑
j)1

N-1

|�2j+1〉〈 �2j| + h.c.

(17)

|k+,o〉 ) 1

√N
∑
j)1

N

eik(2j-1)|�2j-1〉

|k+,e〉 ) 1

√N
∑
j)1

N

eik2j|�2j〉

0 ) |〈k+,o|HKD|k+,o〉 - ε 〈k+,o|HKD|k+,e〉
〈k+,e|HKD|k+,o〉 〈 k+,e|HKD|k+,e〉 - ε |

) | R - ε �1e
ik + �2e

-ik

�1e
-ik + �2e

ik -R - ε |

εk
2 ) R2 + �1

2 + �2
2 + 2�1�2 cos(2k)

εk ) sign[cos(k)]√R2 + �1
2 + �2

2 + 2�1�2 cos(2k)
(18)
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|k+〉 )
(�1e

ik + �2e
-ik)|k+,o〉 + (εk - R)|k+,e〉

√(εk - R)2 + �1
2 + �2

2 + 2�1�2 cos(2k)
) 1

√N
∑
j)1

N (�1e
ik + �2e

-ik)eik(2j-1)|�2j-1〉 + (εk - R)eik2j|�2j〉

√(εk - R)2 + �1
2 + �2

2 + 2�1�2 cos(2k)
(19)

We obtain the incoming eigenstate equivalent,

from a very similar process.
Following the Newns-Anderson approach, we write the Hamiltonian eigenstates as |k〉 ) A|k+〉 + B|k-〉 , where

Again introducing the virtual sites 0 and 2N + 1 such that (�0 |k〉 ) (�2N+1 |k〉 ) 0, we see that

where k is quantized by

with n ) 1, 2, ..., 2N. An additional solution with ε ) R can arise from 〈�0|k〉 ) 0, indicating the possible presence of the surface
state.

The Hamiltonian eigenstates are then

where Akn
is the normalization constant. For the case where �1 ) �2, the kn satisfy kn ) nπ/(2N + 1) and Akn

) 2/(2N + 1)1/2 (an
equivalent quantization condition to the Newns-Anderson case for 2N sites, after simplification).53 Even though changes in �1 and
�2 vary the spacings between the kn, we will assume they are uniform (and hence the normalization constants are invariant) for the
spectral density calculation.54 This assumption is needed for the conversion of a discrete sum to a continuous integral.

Having the eigenvalues and the eigenvectors, the spectral density can be calculated using eq 2, as detailed in the Appendix.
Accordingly

for [R2 + (�1 - �2)2]1/2 e |E| e [R2 + (�1 + �2)2]1/2. ΓKD(E) ) 0 for all other E.
Here, we see that the center of the band gap is at E ) 0, suggesting � represents the center of the band gap. We also note that

ΓKD(E) simplifies to ΓNA(E) in the combined limit of R f 0 and �1 f �2 ≡ �, as desired. For parametrization purposes, the band
gap is given by 2[R2 + (�1 - �2)2]1/2, and the valence (or conduction) band width is given by [R2 + (�1 + �2)2]1/2 - [R2 + (�1 -
�2)2]1/2. Having three parameters and two nonlinear conditions, there may be flexibility in choosing values, and a third criterion from
the band structure may be prudent. One immediate limitation of this model is that the valence and conduction bands have equal
band widths.

|k-〉 ) 1

√N
∑
j)1

N (�1e
-ik + �2e

ik)e-ik(2j-1)|�2j-1〉 + (εk - R)e-ik2j|�2j〉

√(εk - R)2 + �1
2 + �2

2 + 2�1�2 cos(2k)

〈�2j-1|k〉 )
A(�1e

ik + �2e
-ik)eik(2j-1) + B(�1e

-ik + �2e
ik)e-ik(2j-1)

√N√(εk - R)2 + �1
2 + �2

2 + 2�1�2 cos(2k)

〈�2j|k〉 )
(εk - R)(Aeik2j + Be-ik2j)

√N√(εk - R)2 + �1
2 + �2

2 + 2�1�2 cos(2k)

〈�2j-1|kn〉 )2A

√N

�1 sin[2knj] + �2 sin[2kn(j - 1)]

√(εkn
- R)2 + �1

2 + �2
2 + 2�1�2 cos(2kn)

〈�2j|kn〉 )2A

√N

(εkn
- R) sin(2knj)

√(εkn
- R)2 + �1

2 + �2
2 + 2�1�2 cos(2kn)

�1 sin[2kn(N + 1)] + �2 sin[2knN] ) 0 (20)

|kn〉 ) Akn ∑
j)1

N (�1 sin[2kn j] + �2 sin[2kn(j - 1)])|�2j-1〉 + (εkn
- R) sin(2kn j)|�2j〉

√(εkn
- R)2 + �1

2 + �2
2 + 2�1�2 cos(2kn)

(21)

ΓKD(E) ) γ2

�2
2�[R2 + (�1 + �2)

2 - E2][E2 - R2 - (�1 - �2)
2]

(E - R)2
(22)
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ΓKD(E) is also asymmetric with respect to the interchange of �1 for �2 and of R for -R. For this � disparity, a careful review of
the Hamiltonian shows that, for 2N sites, there is one more �1 bond than there is �2, demonstrating the difference between the two
bond types. The sensitivity to R stresses the importance of the surface. As we will thoroughly explore later, these asymmetries hint
at the importance of the molecule-semiconductor bonding configuration to the molecule-electrode interactions.

We now use eq 4 to deduce an analytic form for ΛKD(E). Due to the alternations, there are two electrode Green’s functions: one
for the odd-indexed sites and another for those even,

We only need GKD
1 (E) for calculating ΣKD(E) since the molecule solely couples to site 1 in the tight-binding Hamiltonian (V is 0 for

the other sites). Correspondingly

Following the discussion for the NA model, we choose the positive radical for -[R2 + (�1 + �2)2]1/2 e E e -[R2 + (�1 - �2)2]1/2

and the negative for [R2 + (�1 - �2)2]1/2 e E e [R2 + (�1 + �2)2]1/2 to make ΓKD(E) g 0. Similarly, the negative branch ensures
that ΣKD(E) f 0 as |E| f ∞.

The only remaining sign selection pertains to the band gap region. From Koutecký,38 we expect a surface state at E ) R only
when |�1| e |�2|. Translating to requirements of the Green’s function, GKD

1 (E) should have a pole at E ) R when |�1| e |�2| and be
well-behaved when |�1| > |�2|. The denominator of GKD

1 (E) is irrefutably 0 at E ) R, meaning GKD
1 (E) has a removable singularity

when its numerator is 0 and a first-order pole otherwise. Furthermore, the radical simplifies to |�1
2 - �2

2| at E ) R, making the
positive branch the desired choice here for all combinations of �1 and �2. Finally

where

As with ΓKD(E), ΛKD(E) f ΛNA(E) in the combined limit of R f 0 and �1 f �2 ≡ �.55

Alternating Site (AS) and Alternating Bond (AB) Models. The above procedure could be repeated in the analysis of the AS
and AB models; however, it is far easier to take the limits �1 f �2 ≡ � and R f 0, respectively. For the AS model, we get

for |R| < |E| e (R2 + 4�2)1/2, and ΓAS(E) ) 0 otherwise. Similarly

with

Given the reduction in the number of parameters, a semiconductor material can be represented by choosing 2|R| to be the band
gap and (R2 + 4�2)1/2 - |R| to be the valence (conductance) band width. We note that R is only specified in magnitude. As
expected from Koutecký,38 the bulk band edges have extended to (R, and the pole in ΣAS(E) at E ) R indicates the surface
state. Figure 3 displays ΣAS(E) for positive and negative R, highlighting the dependence of the surface state’s location on the
site energy of the “surface”.

GKD
1 (E) ) 1

E - R - �1
2GKD

2 (E)

GKD
2 (E) ) 1

E + R - �2
2GKD

1 (E)

GKD
1 (E) )

E2 - R2 - �1
2 + �2

2 ( √[E2 - R2 - (�1 - �2)
2][E2 - R2 - (�1 + �2)

2]

2�2
2(E - R)

(23)

ΛKD(E)

γ2
)

E2 - R2 - �1
2 + �2

2 + ΘKD(E)√[E2 - R2 - (�1 - �2)
2][E2 - R2 - (�1 + �2)

2]

2�2
2(E - R)

(24)

ΘKD(E) ) Θ(R2 + (�1 - �2)
2 - E2) - Θ(E2 - R2 - (�1 + �2)

2)

ΓAS(E)

γ2
) 1

�2�(R2 + 4�2 - E2)(E + R)
E - R

(25)

ΛAS(E)

γ2
)

E2 - R2 + ΘAS(E)√(E2 - R2)(E2 - R2 - 4�2)

2�2(E - R)
(26)

ΘAS(E) ) Θ(R2 - E2) - Θ(E2 - R2 - 4�2)
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Turning to the AB model,

for |�1 - �2| e |E| e |�1 + �2| and ΓAB(E) ) 0 otherwise.
Additionally

where

We can choose �1 and �2 such that 2|�1 - �2| is the material
band gap and |�1 + �2| - |�1 - �2| is the valence (conduction)
band width. Similar to the AS model, these specifications
ambiguously determine two � values for the material, � and �′,
with two ways to assign them to �1 and �2. Furthermore, the
surface state expectedly appears at E ) 0 when |�2| > |�1|. The
existence of the surface state is the primary difference when �1

and �2 are interchanged, although the self-energy also scales
with �2

-2. Finally, Figure 4 depicts ΣAB(E) for both |�1| > |�2|
and |�1| < |�2|.

Comparison to Previous Results. A previous article41

reported significantly different spectral densities for the AS and
AB models from those reported here. In that derivation, the
correct Bloch state energies were obtained; however, it was then
assumed that Vkn

∝ sin(kn) for the spectral density calculations,
as was the case in the NA model. This assumption results in
bands with the correct widths and gaps but incorrect structures.
For comparison, these forms were

and

We correct typographical errors in ref 41 by replacing E with
|E| in the numerators. Figures 5 and 6 display the old forms
along with the new results presented here. In most cases, the
old versions tend to overestimate the spectral densities, which
could lead to inflated conductances, and they completely miss
the surface states. The old versions are also symmetric with
respect to the interchange of R for -R and �1 for �2.

Electronic Transport

Having computed the self-energies associated with these
various models, we proceed to investigate the effects of
semiconductor electrodes on electronic transport. The AB and
AS models have been parametrized for various materials in the
past, and values of R, �, and �′ for gold, silicon, and titanium
dioxide are listed in Table 1. We take � to be the material’s
Fermi level by assuming the metal band is half-filled56 (we noted
that � is the center of the band gap, the conventional Fermi
level for semiconductors). Since all junctions have electrodes
of the same material, we rescale the energy coordinate to EF )

Figure 3. The self-energy, ΣAS(E)/γ2, for an interface with an AS
semiconductor. The surface state at E ) R manifests as a pole in both
ΓAS(E) (green, solid line for R > 0 or purple, dotted line for R < 0) and
ΛAS(E) (blue, dashed line for R > 0 or red, dot-dashed line for R < 0).
The band edges are denoted, in magnitude, by E- ≡ |R| and E+ ≡ (R2

+ 4�2)1/2.

ΓAB(E)

γ2
) 1

�2
2�[(�1 + �2)

2 - E2][E2 - (�1 - �2)
2]

E2

(27)

ΛAB(E)

γ2
)

E2 - �1
2 + �2

2 + ΘAB(E)√(E2 - (�1 + �2)
2)(E2 - (�1 - �2)

2)

2�2
2E

(28)

ΘAB(E) ) Θ((�1 - �2)
2 - E2) - Θ(E2 - (�1 + �2)

2)

ΓAS
old(E)

γ2
) 2|E|

�2 �1 - [E2 - R2 - 2�2

2�2 ]2

(29)

Figure 4. The self-energy, ΣAB(E)/γ2, for an interface with an AB
semiconductor. When |�1| < |�2|, the surface state presents a pole in
ΛAB(E) (red, dot-dashed line) at E ) 0. ΛAB(E) is well-behaved at E
) 0 when |�1| > |�2| (blue, dashed line). The interchange of �1 and �2

simply rescales the spectral densities (the green, solid line for |�1| >
|�2| and the purple, dotted line for |�1| < |�2|). E- ≡ |�1 - �2| and E+
≡ |�1 + �2| denote the band edges, in magnitude.

Figure 5. Comparison of ΓAS
old(E)/γ2 (green, solid line) with ΓAS(E)/γ2

for R < 0 (blue, dashed line) and R > 0 (purple, dotted line). As in
Figure 3, E- t |R| and E+ t (R2 + 4�2)1/2.

ΓAB
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) 2|E|
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0 (� ) 0), highlighting the effects of R, �, and �′. We follow
the convention of choosing γ ≈ �/2 for TiO2,40 and similarly
for Si. We pick γ for gold such that the magnitude of the metal
spectral density is comparable to that in previous studies. Before
applying the models, we warn against the quantitative inter-
pretation of the ensuing results due to the qualitative selection
of these critical parameters. To this end, the currents reported
later will be normalized to the maximum current for a given
set of electrodes in the particular calculation.

One paramount issue is the effect of semiconducting elec-
trodes on the transport: how do semiconductors change the
current-voltage profiles of electrode-molecule-electrode junc-
tions? As a necessary basis for comparison, we briefly review
the transport across a gold-molecule-gold junction, within the
NA model and the Landauer-Imry limit. Figure 7 displays the
transmission and current through the junction for various
molecular-level energies, electron injection energies, and applied
bias voltages. Figure 7a shows the formation of a resonance at
each ε, as indicated by the ridge of high transmission. The
resonances are present near the molecular state energies,

although careful inspection reveals the high-transmission ridge
(HTR) to be slightly perturbed from the E ) ε diagonal. The
inset of Figure 7a shows the transmission function when we
neglect the molecular-level shiftings caused by adsorption,
ΛNA(E). With essentially unchanged results (the HTR remains
linear, although now coincident with the E ) ε diagonal), we
see that the weak molecular-level shiftings caused by adsorption
to metals can be omitted to a good approximation (in agreement
with ref 11). In Figure 7b, current appears for all positive
voltages when the molecular site level is positioned at the Fermi
energy, with increased voltages widening the range of molecular
site levels able to function as current channels.

Two Semiconductor Electrodes. Having examined a
metal-molecule-metal junction for comparison, we now
consider semiconductor-molecule-semiconductor junctions
within the AS and AB models. We first examine two silicon
electrodes in the alternating bond framework. The semiconductor
band gap is the most noticeable feature in the transmission plots
(left column) of Figure 8, as evidenced by the vertical strip of
zero transmission in each plot. In these regions, the absence of
states in the donor electrode prevents electrons from injecting

Figure 6. Comparison of ΓAB
old(E)/γ2 (green, solid line) with ΓAB(E)/γ2

for |�1| < |�2| (blue, dashed line) and |�1| > |�2| (purple, dotted line). As
in Figure 4, E- t |�1 - �2| and E+ t |�1 + �2|.

TABLE 1: Model Parameters for Au, Si, and TiO2

material model |R| (eV) � (eV) �′ (eV) γ (eV)

Au11 NA -8.95 -0.45
Si39 AB -1.60 -2.185 -1.0
TiO2

40 AS 1.6 -2 -1.0

Figure 7. (a) Transmission and (b) current for two gold electrodes;
see Table 1 for the parameterizations. The transmission with ΛNA(E)
neglected [inset of (a)] is displayed for comparison, showing the
molecular-level shifting described by ΛNA(E) to be insignificant for
metals. The current is normalized to the maximum current in (b), which
appears at ε ) EF.

Figure 8. Transmissions (left column) and currents (right column)
for junctions with two silicon electrodes. (a, b) |�2| < |�1| for both
electrodes (zero contributed surface states); (c, d) mixed �1 and �2 values
for the two electrodes (one surface state); (e, f) |�2| > |�1| for both
electrodes (two surface states). The band gaps cause the strips of zero
transmission around the Fermi level and the minimum bias thresholds
for the existence of current. The insets of the transmission plots show
the respective transmission functions when the molecular level shifting,
ΛAB(E), is neglected. Unlike metals, such shiftings are important for
semiconductors. The currents are normalized to the maximum current
[which occurs in (b)], and the numerical parameter values are listed in
Table 1.
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into the junction; likewise, there are no states for them to occupy
once transmitted to the acceptor electrode. The existence of a
bias voltage threshold, V0, is correspondingly the most prominent
effect of semiconductor electrodes on the current. This threshold
is the minimum applied bias voltage needed to access states in
either the valence or conduction band (thereby allowing current)
and is independent of the molecular site energy. Figure 9a shows
the current as a function of the voltage for fixed ε, further
illustrating this voltage threshold.

Recalling the asymmetry in the self-energy (eqs 27 and 28) when
�1 and �2 are exchanged, we have three possible electrode “bonding
configurations” in each junction. Noting that |�| < |�′| in Table 1,
one assignment possibility, where neither electrode contributes a
surface state (�1,L ) �1,R ) �′), is displayed in Figure 8a,b. Second
is the case of one surface state (�1,L ) � and �1,R ) �′, or vice
versa) in Figure 8c,d, and last is the case of two degenerate surface
states (�1,L ) �1,R ) �) in Figure 8e,f.

As expected from the possibility of surface states and as
evidenced by Figure 8, the bonding configuration has a dramatic
impact on the transport, particularly when ε is in the band gap.
When neither electrode contributes a surface state (Figure 8a,b),
we observe broad HTRs in both bands. The HTRs are shifted
away from the E ) ε diagonal, into the bands, and cause the

double-humped current-voltage profile. With one contributed
surface state (Figure 8c,d), the HTRs edge closer to the band
gap. The surface state in the center of the band gap appears to
contribute transmission, signaling enhanced transport through
molecular energy levels in the band gap. The HTRs finally
spread into the band gap with the facilitation of two surface
states (Figure 8e,f). Ignoring the voltage threshold, the semi-
conductor transport in Figure 8f is very similar to the metal
transport in Figure 7b; notably, only one hump is present in
the current, centered around the Fermi level. We infer two
principal effects of surface states on the transport. First, they
aid transport through nearby molecular site levels (presently in
the band gap). Second, as suggested by the reduction in the
broadening of the HTRs with more surface states, they interfere
with molecule-electrode hybridization. This reduction is further
explained by the scaling of ΣAB(E) with �2

-2; see Figure 4.
Having insight about the shifting and broadening of the HTRs

in Figure 8, we now investigate their bending. The insets of
Figure 8a,c,e each display the transmission through their
respective junctions when the molecular-level shifting, ΛAB(E),
is neglected. Molecular-level shifting through ΛAB(E) is re-
sponsible for both the movement of the HTR away from the
diagonal as well as its contorted shape. The nonlinear shape of
ΛAB(E) when ΓAB(E) > 0 explains the amplified shifting near
the band edges; see Figure 4. Recalling that ΛNA(E) is essentially
negligible for metals, we see that semiconductors interact more
strongly with the molecule; the electronic transport is influenced
by the molecular-level shifts and is also sensitive to the presence
of surface states.

A quick glance at the transmission contour plots in Figure 8
shows that the HTRs are bent, shifted, and broadened depending
on the presence of surface states. That the HTRs span the same
injection energy ranges with a single HTR per band may suggest
a “conservation of transmission” through the various junctions.
This visual effect is fictitious. Physical systems transmit
electrons through discrete, but broadened, resonances. Only their
corresponding horizontal segments in Figures 7 and 8 have
meaning. For instance, a molecular site level at ε - EF ) -3.5
eV does not display a resonance in Figure 8a when ΛAB(E) is
included (the main panel); however, a resonance appears at E
- EF ) -3.5 eV when the shifting is neglected (the inset). For
this particular level, the existence of a resonance, and thus the
magnitude of transmission, is not conserved, despite appearances
in the contour plots. To further illustrate how the transmission
function changes with the molecular site level, Figure 9b shows
the transmission function of Figure 8a for particular ε.

If we instead use the alternating site model and consider a
TiO2-molecule-TiO2 junction, we encounter similar choices
in bonding configuration. Here, we can choose sign(R) since
only |R| is parametrized, and three similar bonding configurations
arise. These bonding configurations may be loosely interpreted
as the molecule bonding with titanium on both electrodes, with
oxygen on both, or with one titanium and one oxygen.

Figure 10 shows that many of the trends observed in the AB
model are still present. First, the band gap is again manifested
by strips of zero transmission and leads to similar voltage
thresholds in the currents. Second, the bonding configuration
in these junctions is once again important. When the molecule
is connected to the same atom type on both electrodes (both R
> 0 or both R < 0), the degenerate surface states appear to form
a system resonance at R for all ε. This leads to perfect
transmission at E ) R regardless of the molecule site level, as
displayed in Figure 10a,e. While always present, these reso-
nances become infinitely narrow as |ε - EF| f ∞ and are

Figure 9. (a) Current-voltage profiles for molecular transport
junctions with two gold (red, dot-dashed line) and two silicon
electrodes. The molecular site levels are at the Fermi levels of their
respective junctions, causing the metal-metal line to rise quickly
for small voltages. Silicon junctions with zero (green, solid line),
one (blue, dashed line), and two (purple, dotted line) contributed
surface states all display a minimum voltage threshold, V0. Electrode
states are unavailable below this threshold, and no current is
observed. The currents are normalized to the maximum current for
a given set of electrodes. (b) Transmission functions at various ε
for a silicon-molecule-silicon junction with zero contributed
surface states; see Figure 8a. This illustrates how the bending,
shifting, and broadening of the resonances change their interactions
with different molecular site levels. The “conservation of transmis-
sion” suggested by the presentation of Figure 8 is misleading.
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unlikely to be experimentally observed due to realistic averaging
effects. Conversely, when the molecule has mixed bonding to
the electrodes, Figure 10c,d, the surface states at R and -R
appear to destroy transmission at (R. We speculate that the
molecule-semiconductor interfaces, recently shown to be
critical in transport,25 are responsible for these observations;
however, it is not immediately obvious why or how degenerate
surface states enhance transport and nondegenerate surface states
dampen it.

Figure 3 shows that ΛAS(E), similar to ΛNA(E), is linear when
ΓAS(E) > 0. Thus, when we remove ΛAS(E) from the transmis-
sion (the insets of Figure 10a,c,e), the HTRs maintain linearity.
Even without the contortions of the AB model, this shifting is
still more prominent than it was in the NA model and is seen
to make the HTRs more horizontal. As with the AB model, the
AS model indicates that semiconductor-molecule-semiconductor
junctions have strong molecular-level shiftings induced by
adsorption [Λ(E)] and are sensitive to the bonding configurations
at the electrode-molecule interfaces.

Conclusions

The study of electronic transport through electrode-mol-
ecule-electrode junctions has been increasing in recent years

due to the interest in scanning probe microscopies, solar cells,
and general molecular transport junctions. While most
theoretical studies have focused exclusively on junctions with
metal electrodes, experiments have also been reported for
systems utilizing semiconductor electrodes. Such studies have
observed negative differential resistance and asymmetric
current-voltage profiles, which pose great promise for novel
device construction.

In thispaper,weconsideredextensionsof theNewns-Anderson
model for one-dimensional metals to one-dimensional semi-
conductors, where the atomic site energies and/or the
interatomic site couplings were alternated. We derived the
spectral densities and ultimately the total self-energies for
describing molecular interactions with these one-dimensional
semiconductors, including the presence of surface states.
These self-energies (eqs 22 and 24) are the primary contribu-
tions of this paper and should be used instead of those from
the previous paper.41

These models were then applied to several molecular transport
junctions, and the current was calculated in the Landauer-Imry
(coherent tunneling) limit. We found that a semiconductor-mol-
ecule-semiconductor junction displays a minimum bias thresh-
old for generating current across the junction due to the
electrodes’ band gaps. Semiconductor-semiconductor junctions
also display different molecule-electrode interactions than
similar metal-metal junctions. These effects are particularly
noticeable through the increased molecular-level shifting caused
by adsorption to semiconductors and are very sensitive to how
the molecule bonds to the semiconductor surface. Furthermore,
the presence of surface states, a consequence of the bonding
configuration in these models, drastically changes the electronic
transport. Surface states dominate the transmission in some
cases, allowing the largest currents for molecular site levels in
the band gap. While discussed very generally here, the effects
of these surface states on transport need to be understood in
more detail. Extensions to junctions with one metal and one
semiconductor electrode, subject to the “band lineup” problem,
are also envisioned.

Unlike the situation for metals, molecular energy level
shifting, introduced through Λ(E), is non-negligible for semi-
conductors. Essentially no differences in the transmisson func-
tions were observed between the inclusion and exclusion of
ΛNA(E) for metal-metal junctions. Semiconductors, however,
evidenced both bending and shifting with the inclusion of
ΛKD(E) (and its AB and AS limits). This bending of the high-
transmission ridges (HTRs) makes them resonant with some
molecular energy levels while not with others, breaking a
“conservation of transmission” seen in metal-metal junctions.
While physically interesting in its own right, such an effect may
also be advantageous for certain applications. Consider a
molecule with a low-energy state connected between two
semiconductor electrodes (without surface states, for simplicity).
If this molecular state is below the HTRs, relatively low
transport will be observed through the junction. When we add
a gating voltage, we move the molecular level relative to the
surfaces, bringing it into the range of the resonances, thereby
obtaining high transport. Additional gating voltage displaces the
level out of this range, reducing the current. From this, we can
imagine molecular transistors. Semiconductor electrodes also
invite the extension of coherent control schemes to manipulate
electric current. The use of sub-band gap light and optimal
control theory to command transport and device functionality
holds exciting potential.

Figure 10. Transmissions (left column) and currents (right column)
for junctions with two titanium dioxide electrodes. (a, b) Both electrodes
connected with R < 0; (c, d) mixed R > 0 and R < 0 connectivity; (e,
f) both at R > 0. As in Figure 8, we observe strips of zero transmission
and a minimum bias threshold for current. The insets similarly show
the transmissions with ΛAS(E) neglected, indicating the importance of
molecular-level shifting due to semiconductor adsorption. The currents
are normalized to the maximum current [realized in (b, f)], and the
model TiO2 parameters are listed in Table 1.
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In closing, we remind the reader that many of the parameters used to model transport were qualitatively chosen, and the models’
results should only be qualitatively interpreted. Due to the evidenced band gap, we believe these models capture much of the
fundamental physics and chemistry of adsorption to semiconductors, although inherent errors are introduced by describing three-
dimensional electrodes with one-dimensional models. A comparison of results from these one-dimensional models with those from
electronic structure calculations may reveal additional information about electronic transport through molecule-semiconductor
junctions.
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Appendix

Integration for ΓKD(E). The eigenvalues (eq 18) and eigenvectors (eq 21) are used in eq 2 for calculating ΓKD(E). Three change
of variable substitutions are needed, u ) R2 + �1

2 + �2
2 + 2�1�2 cos(2k), x ) (u)1/2, and y ) -(u)1/2. Furthermore, the sign function

in the eigenvalues splits the bounds of integration into two halves, (0, π/2) and (π/2, π). This split leads to an additional sign
subtlety during the conversion of k to u; sin(2k) is positive for 0 < k < π/2 and negative for π/2 < k < π. Finally

for [R2 + (�1 - �2)2]1/2 e |E| e [R2 + (�1 + �2)2]1/2. ΓKD(E) ) 0 for all other E.
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